2 research outputs found

    Accelerating Manufacturing Decisions using Bayesian Optimization: An Optimization and Prediction Perspective

    Get PDF
    Manufacturing is a promising technique for producing complex and custom-made parts with a high degree of precision. It can also provide us with desired materials and products with specified properties. To achieve that, it is crucial to find out the optimum point of process parameters that have a significant impact on the properties and quality of the final product. Unfortunately, optimizing these parameters can be challenging due to the complex and nonlinear nature of the underlying process, which becomes more complicated when there are conflicting objectives, sometimes with multiple goals. Furthermore, experiments are usually costly, time-consuming, and require expensive materials, man, and machine hours. So, each experiment is valuable and it\u27s critical to determine the optimal experiment location to gain the most comprehensive understanding of the process. Sequential learning is a promising approach to actively learn from the ongoing experiments, iteratively update the underlying optimization routine, and adapt the data collection process on the go. This thesis presents a multi-objective Bayesian optimization framework to find out the optimum processing conditions for a manufacturing setup. It uses an acquisition function to collect data points sequentially and iteratively update its understanding of the underlying design space utilizing a Gaussian Process-based surrogate model. In manufacturing processes, the focus is often on obtaining a rough understanding of the design space using minimal experimentation, rather than finding the optimal parameters. This falls under the category of approximating the underlying function rather than design optimization. This approach can provide material scientists or manufacturing engineers with a comprehensive view of the entire design space, increasing the likelihood of making discoveries or making robust decisions. However, a precise and reliable prediction model is necessary for a good approximation. To meet this requirement, this thesis proposes an epsilon-greedy sequential prediction framework that is distinct from the optimization framework. The data acquisition strategy has been refined to balance exploration and exploitation, and a threshold has been established to determine when to switch between the two. The performance of this proposed optimization and prediction framework is evaluated using real-life datasets against the traditional design of experiments. The proposed frameworks have generated effective optimization and prediction results using fewer experiments

    A Data Driven Sequential Learning Framework to Accelerate and Optimize Multi-Objective Manufacturing Decisions

    Full text link
    Manufacturing advanced materials and products with a specific property or combination of properties is often warranted. To achieve that it is crucial to find out the optimum recipe or processing conditions that can generate the ideal combination of these properties. Most of the time, a sufficient number of experiments are needed to generate a Pareto front. However, manufacturing experiments are usually costly and even conducting a single experiment can be a time-consuming process. So, it's critical to determine the optimal location for data collection to gain the most comprehensive understanding of the process. Sequential learning is a promising approach to actively learn from the ongoing experiments, iteratively update the underlying optimization routine, and adapt the data collection process on the go. This paper presents a novel data-driven Bayesian optimization framework that utilizes sequential learning to efficiently optimize complex systems with multiple conflicting objectives. Additionally, this paper proposes a novel metric for evaluating multi-objective data-driven optimization approaches. This metric considers both the quality of the Pareto front and the amount of data used to generate it. The proposed framework is particularly beneficial in practical applications where acquiring data can be expensive and resource intensive. To demonstrate the effectiveness of the proposed algorithm and metric, the algorithm is evaluated on a manufacturing dataset. The results indicate that the proposed algorithm can achieve the actual Pareto front while processing significantly less data. It implies that the proposed data-driven framework can lead to similar manufacturing decisions with reduced costs and time
    corecore